Target Tracking Based on a Nonsingular Fast Terminal Sliding Mode Guidance Law by Fixed-Wing UAV
نویسندگان
چکیده
This paper proposes a modified nonsingular fast terminal sliding mode (NFTSM) guidance law to solve the problem of ground moving target tracking for fixed-wing unmanned aerial vehicle (UAV) in a planar environment. Firstly, the loitering algorithm is analysed, which can steer the UAV to follow and circle around a ground moving target with the desired distance by heading angle control. Secondly, the effects of different parameters on the convergence time of sliding manifold is presented which is helpful for the designing of sliding manifold. Singularity can be avoided by using a modified saturation function which is obtained through a small range around the null point. Moreover, the NFTSM sliding manifold is used in the loitering algorithm. By using the Lyapunov theory, the finite-time convergence of the proposed method has been proved in the the reaching phase and the sliding phase. In order to verify the approach’s feasibility and benefits, numerical simulations are performed by using a moving target with three different motion states in comparison with the conventional sliding model control method. Simulation results indicate that, under the proposed NFTSM guidance law, the UAV can reach the desired distance in a short time.
منابع مشابه
Optimal Sliding-Mode Guidance Law for Fixed-Interval Propulsive Maneuvers
An optimal strategy based on minimum effort control and also with terminal positionconstraint is developed for an exoatmospheric interceptor with a fixed- interval guidance time. It isthen integrated with sliding-mode control theory to drive an optimal sliding-mode guidance law forfixed-interval guidance time. In addition, this guidance law is generalized for intercepting anarbitrarily time-var...
متن کاملFault tolerant nano-satellite attitude control by adaptive modified nonsingular fast terminal control
In this paper, an adaptive fault tolerant nonlinear control is proposed for attitude tracking problem of satellite with three magnetorquers and one reaction wheel in the presence of inertia uncertainties, external disturbances, and actuator faults. Firstly, sliding surface variable is chosen based on avoiding the singularity of control signal and guaranteeing the convergence of attitude trackin...
متن کاملA Distributed Framework Design for Formation Control of Under-actuated USVs in the Presence of Environmental Disturbances Using Terminal Sliding Mode Control
This paper proposes a distributed framework for formation control of USVs around a predefined target. This framework, according to the mission and problem conditions, includes three parts: determination of a desired path for each USV, preventing USVs entry to the target area and tracking the desired path of USVs under environmental disturbances. In the first part, a distributed approach is prop...
متن کاملOptimal Integral Sliding Mode Controller of a UAV With Considering Actuator Fault
In this paper, using the State Dependent Riccati Equation (SDRE) method, we propose a Robust Optimal Integral Sliding Mode Controller (ROISMC) to guarantee an optimal control law for a quadrotor which has become increasingly important by virtue of its high degrees of manoeuvres ability in presence of unknown time-varying external disturbances and actuator fault. The robustness of the controller...
متن کاملDesign of a Novel Framework to Control Nonlinear Affine Systems Based on Fast Terminal Sliding-Mode Controller
In this paper, a novel approach for finite-time stabilization of uncertain affine systems is proposed. In the proposed approach, a fast terminal sliding mode (FTSM) controller is designed, based on the input-output feedback linearization of the nonlinear system with considering its internal dynamics. One of the main advantages of the proposed approach is that only the outputs and external state...
متن کامل